OF ENVIRONMENTAL BURDEN RELATED TO CRUDE OIL PRODUCTION

BRATISLAVA 2016

NAFTA

- Leader in exploration and production of hydrocarbons in Slovakia
 - ~ yearly gas production at approx. 90 mcm
- Key Slovak Underground Storage Operator
 - ~ capacity 2.6 bcm
- Operating unique storage asset
 - portfolio of 8 geological structures
- Variety of grid interconnections, strategic location
- Important tool of security of gas supplies
- Flexible business partner

NAFTA / SHAREHOLDERS STRUCTURE

NAFTA / HISTORICAL MILESTONES

- 1913 Gbely 1 was the very first well drilled for hydrocarbons in the Vienna Basin: it was spudded on the 28th October 1913
- 1914 Beginning of industrial oil production
- 1950 Beginning of industrial gas production
- 1973 Beginning of storage of natural gas in underground storage facilities in Láb
- 1977 Successful exploration of deep pre-Neogene formations
- 1988 First 3D seismic campaign performed in the Závod area of the Vienna Basin

NAFTA / HISTORICAL MILESTONES

•	2002 – 2004	Implementation of standard E&P methodology to prospect evaluation (IFP, AAPG)
•	2006	Geological optimization of UGS structures and increase of capacity to 2 bcm
•	2008	Construction of a new UGS facility Gajary-Baden started
•	2013	EPH became a shareholder of NAFTA via SPP
•	2014	End of Gajary-Baden development. Working gas volume 2.6 bcm
•	2015	NAFTA partners RAG to construct a testing storage facility for renewable energy

NAFTA / UNDERGROUND GAS STORAGE (UGS)

NAFTA / EXPLORATION & PRODUCTION (E&P)

 100-years history of successful exploration and production of hydrocarbons

 Exploration activities in Slovakia focused on the Vienna Basin, Danube Basin and East Slovakian Basin

NAFTA / E&P ACTIVITIES AND ACHIEVEMENTS

- Since 2004, we have drilled a total of 44 wells with 50 % success rate.
- Exploration licenses in the extent of 2 800 km²
- 3D seismic data covering a total area of up to 1 400 km²
- Approximately 3 200 wells have been drilled
- The deepest well drilled to a total depth of 6 505 m

ENVIRONMENTAL BURDEN

- The crude oil production started in Austro-Hungarian Empire in 1914 in Gbely
 - The knowledge about crude oil was that is better than coil
 - Nobody cares about environmental impact, the main goal was to follow the industrial revolution
 - The crude oil was found in shallow horizons from couple of tenth meters to 300 meters
 - The production well was drilled in triangles approx.
 each 70 meters
 - Waste was stored just near to well in mud pit it was simple pit without any isolation
 - Collecting of crude oil was done by trench

PROJECT SCOPE

- In 2004 the owners of NAFTA a.s. decide to settle environmental burdens
 - Identification of wells, centers mud pits owned by NAFTA
 - The goal was to define financial provision for each center and well in case that it will be not use anymore
 - ~ For each well was define
 - Project of subsurface liquidation
 - Potential contamination model and estimation of costs
 - Technical recultivation
 - Biological recultivation
 - For each center was define
 - Project of wrecking of the buildigns and technology equipment
 - Potential contamination model and estimation of costs
 - Technical recultivation
 - Biological recultivation

WELL ABANDONMENT

- For each well was prepared project for workover / well abandonment
- The well was isolated with several cement plugs
- The tightness of cement plug was tested
- The overground production tree was removed
- The well casing was cut approx. 2 meter bellow the ground level
- Casing was closed by metal cover and tighten by welding

DECONTAMINATION – INSUFFICIENT EXPERIENCES

- We had small experiences from previous abandonments
 - There were several experiments with in-situ decontamination
 - It takes a long time
 - It needs permanent care
 - We were not satisfied with results and progress from the past decontaminations
 - There were big pressure from shareholders to set up process which will have clear time and expense frame
 - Simply they don't want open bill
 - We decide to use ex-situ decontamination
 - Weak point is only estimation of contaminated soil
 - All the risks related to decontamination is transferred to supplier

DECONTAMINATION – WHICH METHOD

- We studied technical articles and did market search to decide for method
 - We decide for biodegradation
 - We had some experiences from in-situ project
 - There were existing suppliers
 - Transportation costs were reasonable
 - The prices were high
 - We started active communication with potential suppliers to make bigger market competition
 - We expect to deliver early more than 50 thousand tons of contaminated soil

DECONTAMINATION – COSTS ESTIMATION

- We identified approx. 150 crude oil wells and 10 centers where we expect contamination of soil
 - We had no time and money to make monitoring of all the places
 - We decide to make several sample pollution monitoring – 10 wells and all centers
 - Monitoring was not detailed but only for rough estimation with expected accuracy about 30%
 - We collect data about the wells production history
 - We was looking for correlation between production data and polluted area around the well
 - We decide to use three parameters for calculating of costs estimation
 - Drilling year, amount of produced crude oil
 - Area index which represent the ground water level

ON THE SITE WORKS / COSTS CONTROL

- We run decontamination usually on 5-6 wells parallel
- The goal was to excavate only necessary amount of the soil
- We need quick identification of pollution
 - The limit was to have less than 1000 mg/kg of soil of Non-polar extractable substances (NEL) which is good indicator for crude oil pollution
 - Smell the first indicator for pollution more than 3000 mg/kg NEL
 - Quick laboratory works delivery of results within 24 hours
- Important skilled personal
 - Excavator operator was able to take layers less than 10 cm.

FINISH OF DECONTAMINATION

- There was supervisor for decontamination works
 - Supervision of works
 - Final inspection of decontaminated area / sampling and evaluation of result from laboratory
 - ~ Final report form each site
- Before technical recultivation we invite the regional environmental officer
- When everything was OK we finished decontamination and technical recultivation follow

RECULTIVATION

- Technical recultivation means
 - heap up of new soil
 - ~ alignment
- Biological recultivation means
 - plantig of naturally occuring vegetation

OS GBELY - PAST

Gathering station

During decontamination and recultivation

OS GBELY - POLLUTION

OS GBELY – 10 YEARS LATER

STUDIENKA 9

Gathering station

During decontamination

CONFERENCE SUSTAINABILITY OF MINERAL RESOURCES AND THE ENVIRONMENT 21. – 22. 11. 2016 STRANA 21

STUDIENKA 9 – 11 YEARS LATER

ZÁVOD 5

Gathering station

During decontamination

ZÁVOD 5 – 10 YEARS LATER

THE WELL GBELY G 114

During decontamination

THE WELL GBELY G 114 - TODAY

BUDGET EVALUATION

- Our costs estimation was not correct
 - We had more than 30% differences nearly on each well
- Finally the abandonment of environmental burden was cheaper than our cost estimation
- Main reasons:
 - Good procurement by tendering we degrease prices for more than 60% of soil biodegradation
 - Good process there was a clear process define
 - Each supplier had own goal
 - Good supervision of works
 - Open and straight communication with all related parties

EVALUATION

- Disposing more than 100 oil wells between 2004 2006
- Up to date was disposed more than 450 wells
- Biological recultivation returned all locations to their original state

www.nafta.sk

